Fotosintesis

Organisme fotosintetik dan heterotrofik hidup didalam keadaan seimbang pada biosfer kita. Tanaman fotosintetik menangkap energy surya dalam bentuk ATP dan NADPH yang dipergunakan sebagai sumber energi untuk membuat karbohidrat dan komponen sel organik lainnya dari karbondioksida dan air. Bersamaan dengan itu organisme tersebut membebaskan oksigen ke atmosfer. Sebaliknya heterotrof aerobik mempergunakan oksigen yang dibentuk untuk menguraikan produk organik berenergi tinggi dari fotosintesis menjadi CO2 dan H2O untuk membentuk kembali ATP guna keperluan aktifitas sel itu sendiri. Karbondioksida yang dibentuk oleh respirasi pada heterotrof kembali ke atmosfer, untuk dipergunakan kembali oleh organisme fotosintetik. Oleh karena itu, energi surya memberikan tenaga pendorong bagi daur karbondioksida dan oksigen atmosfer secara berkesinambungan melalui biosfer kita.

1

6CO2    +  12H2O +  Energi cahaya→C6H12O6+6O2+6H2O

Proses reaksi fotosintesis dalam tumbuhan tinggi dibagi dalam dua tahap, yaitu tahap reaksi terang yang terjadi jika tumbuhan diberi cahaya dan tahap reaksi gelap yang terjadi dengan atau tanpa adanya cahaya matahari. Di dalam sel fotosintetik eukariotik, reaksi gelap dan reaksi terang terjadi di dalam kloroplas.

2

Bentuk kloroplas berbeda pada setiap spesies.organel ini dikelilingi oleh membran luar yang bersambungan, dan bersifat rapuh.suatu sistem membran membungkus ruangan bagian dalam organel, di dalamnya ,terdapat banyak kantung pipih yang dikelilingi membran, yang dinamakan tilakoid, yang biasanya tersusun berlapis-lapis, dinamakan grana. Membran tilakoid mengandung semua pigmen fotosintetik pada kloroplas dan semua enzim yang diperlukan bagi reaksi primer yang bergantung pada cahaya matahar. Cairan di dalam ruang yang melingkupi kantung tilakoid atau stroma mengandung hampir semua enzim yang diperlukan bagi reaksi gelap, yang mereduksi CO2 membentuk glukosa. Berikut ini penjelasan lebih lanjut mengenai tahap reaksi terang dan tahap reaksi gelap.

TAHAP REAKSI TERANG

Reaksi terang terjadi jika ada cahaya, misalnya cahaya matahari. Energi dtangkap olaeh klorofil dan digunakan untuk memecah molekul air, dan pemecahan ini disebut fotolisis.Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH. Reaksi ini diawali dengan penangkapan foton oleh pigmen sebagai antena. Fotosintesis akan menghasilkan lebih banyak energi pada gelombang chaya panjang tertentu. Tumbuhan memiliki dua jenis pigmen yang berfungsi aktif sebagai pusat reaksi atau fotosistem yaitu fotosistem II dan fotosistem I.

Fotosistem I dan Fotosistem II

Reaksi terang cahaya dalam proses fotosintesis penyerapan energy matahari oleh klorofil dimana dilepaskan O2, terdiri dari dua bagian. Bagian pertama disebut fotosistem I yang menyangkut penyerapan energy matahari pada panjang gelombang di sekitar 700nm dan tidak melibatkan proses pelepasan O2. Bagian kedua yang menyangkut penyerapan energy matahari pada panjang gelombang di sekitar 680nm, disebut fotosistem II yang melibatkan pembentukan O2.

Fotosistem I disusun oleh sekitar kurang lebih 200 molekul klorofil dan karotenoid. Klorofil a terdapat di dalam kloroplas semua sel tumbuhan hijau tetapi sel fotosintesis yang tidak menghasilkan O2 tidak mengandung klorofil a tetapi mengandung bakterioklorofil a atau bakterioklorofil b. Klorofil b adalah klorofil kedua yang terdapat dalam tumbuhan hijau yang fungsinya menyerap cahaya lalu mentransfernya ke klorofil a. Klorofil a dan b murni dapat diisolasi dari ekstrak daun, walaupun keduanya berwarna hijau, spectra penyerapannya sedikit berbeda. Kebanyakan tumbuhan tingkat tinggi mengandung kurang lebih dua kali lebih banyak klorofil a dibanding klorofil b. Ditemukan pula klorofil c yang terdapat dalam ganggang coklat, diatom dan dinoflagelata. Seperti juga klorofil, karotenoid mempunyai kemampuan untuk menangkap energy matahari. Golongan pigmen ini berperan dalam menyerap energy matahari pada bagian daerah panjang gelombang sinar tampak yang tidak tercakup oleh pigmen klorofil, jadi berperan sebagai pelengkap penerima cahaya. Energy matahari yang ditangkap oleh pigmen pelengkap harus dipindahkan terlebih dahulu ke molekul klorofil sebelum digunakan selanjutnya untuk poses fotosintesis.

3

Fotosistem I menyerap energy cahaya terpisah dari FS II, tapi mengandung kompleks inti terpisah, yang menerima electron yang berasal dari H2O melalui kompleks ini FS II terlebih dahulu. Fotosistem I terletak hanya di tilakoid stroma dan di daerah tengah grana yang menghadap ke stroma. Sebagai system yang bergantung pada cahaya FS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan electron ke protein Fe-S larut yang disebut feredoksin.

Fotosistem II mengandung sebuah kompleks inti yang terdiri dari 6 polipeptida integral yang saling berhubungan secara nonkovalen, dan berisi pusat reaksi P680. P680 dalam kompleks inti FS II menerima energy cahaya dengan cara resonansi induktif dari sekitas 250 molekul klorofil a dan b (terdapat dalam jumlah yang hamper sama) dan sejumlah xantofil. Sebagian besar FS II hanya terdapat pada kawasan pinggir tilakoid grana. Daerah tengah grana dan tilakoid stroma mempunyai jauh lebih sedikit FS II. Karena adanya kerja sama antara FS II dan FS I, maka terjadi fotofosforilasi. Dalam fotofosforilasi ini terdapat dua macam aliran transfer elektron, yaitu :

  • Fotofosforilasi Non Siklik

Fotosistem I dan II merupakan komponen penyalur energy dalam rantai pengangkutan electron fotosintesis secara kontinu. Pada aliran elekron nonsiklik, jika suatu molekul klorofil dieksitasi oleh cahaya, tingkat energy electron di dalam strukturnya ditingkatkan oleh sejumlah energy cahaya yang diserap dan klorofil menjadi tereksitasi. Energy eksitasi tersebut ditangkap oleh acceptor primer yang diserahkan kepada plastokuinon atau PQ yang menyerupai ubikuinon pada rantai respirasi mitokondria dan merupakan pembawa electron pertama. Electron yang berasal dari plastokuinon selanjutnya diberikan kepada jenis sitokrom lalu melewatkan electron menuju plastosianin atau PC. Pengangkutan electron dari plastokuinon menuju sitokrom dirangkaikan dengan pembentukan ATP dari ADP + Pi.

Electron berenergi tinggi yang mengalir menurun dari fotosistem II ke fotosistem I, selanjutnya memperoleh energinya kembali dari kuantum cahaya yang diabsorpsi yang menyebabkan tereksitasinya kembali electron. Electron yang telah tereksitasi di fotosistem I ditangkap oleh aseptor primer menuju feredoksin atau Fd. Jika kuanta cahaya diserap oleh fotosistem I, electron kaya energi yang dikeluarkan dari pusat reaksi mengalir di sepanjang rantai pembawa electron menuju NADP+ untuk mereduksinya menjadi NADPH.

4

  • Fotofosforilasi Siklik

Fotofosforilasi siklik ini hanya melibatkan satu fotosistem saja, yaitu fotosistem 1. Electron yang terdapat pada pusat reaksi fotosistem 1 tereksitasi dan di tangkap oleh aseptor penerima electron primer P430 oleh pemberian cahaya pada FS 1, karena electron pada siklus ini energinya tidak mencukupi maka dari itu electron kembali menuju ke citokrom melalui jalan pintas kemudian dipindahkan menuju plastosianin dan kembali ke pusat reaksi fotosistem 1. Karena pemberian cahaya pada FS 1 dapat menyebabkan electron berdaur secara terus menerus keluar pusat reaksi FS 1 dan kembali lagi ke dalamnya, tiap electron didorong di sekitar siklus ini energy yang dihasilkan oleh absoapsi satu kuamntum cahaya. Selama aliran electron, tidak terjadi pembentukan NADPH dan pembebasan oksigen. Namun demikian, siklus aliran electron diikuti oleh fosforilasi ADP menjadi ATP, ditunjukan sebagai fotofosforilasi siklik.

5

Saat electron diangkut, terjadi pembentukan ATP dari ADP dan fosfat selama transport electron fotosintetik. Sejumlah energy cahaya yang ditangkap oleh system fotosintetik ini diubah menjadi energy ikatan fosfat pada ATP. Proses ini disebut fotofosforilasi fotosintetik atau fotofosforilasi, untuk membedakannya dari fotofosforilasi oksidatif pada respirasi mitokondria. Fotofosforilasi oksidatif ADP menjadi ATP pada mitokondria terjadi dengan memanfaatkan energy bebas dari aliran electron berenergi tinggi yang bergerak menurun di sepanjang rantai transport electron. Pada fotofosforilasi fotosintetik, molekul pemindah electron pada rantai penghubung antara fotosistem II dan menghasilkan I terorientasi ke membrane tilakoid sehingga aliran electron menghasilkan perpindahan  ion H+ dari membrane tilakoid luar ke bagian dalam ruangan. Induksi cahaya membangkitkan gradient H+ pada membrane tilakoid sehingga membrane tilakoid bagian dalam lebih bersifat asam. Hal ini menunjukkan kemiosmotik yang memacu mengaktifkan molekul ATP sintetase menjadi aktif mensintesis ATP dari ADP + Pi yang ada di stroma.

6

TAHAP REAKSI GELAP (SIKLUS CALVIN-BENSON)

7

Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson. Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis yang merupakan reaksi pembentukan gula dari bahan dasar CO2 dan energi. Salah satu substansi penting dalam proses ini adalah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat. CO2 yang digunakan berasal dari udara bebas, sedangkan energi yang berupa ATP dan NADPH merupakan hasil dari reaksi terang. Reaksi ini tidak tergantung secara langsung pada cahaya matahari sehingga reaksi ini dapat berlangsung saat malam hari. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap. Reaksi gelap berlangsung pada bagian kloroplas yang disebut dengan stroma.

Reaksi ini melalui 3 tahapan, yaitu:

  1. Fiksasi COoleh RuBP (ribulosa 1,5-bifosfat)
  2. Reduksi APG (3-asam fosfogliserat) menjadi PGAL (1,3 fosfogliseraldehida) oleh NADPH2
  3. Regenerasi RuBP (ribulosa 1,5-bifosfat) dari DAHP (dihiroksiaseton fosfat)

8

Dalam siklus ini meliputi tiga fase utama yaitu:

1. Fase Fiksasi Karbon

Pada fase ini molekul CO2 dari udara difiksasi atau ditautkan pada Ribulosa 1,5-Bifosfat (RuBP) dengan bantuan enzim RuBP karboksilase (Rubisco) dan menggunakan energi dari ATP serta NADH yang dihasilkan dari reaksi terang. Reaksi ini menghasilkan senyawa intermediet berkarbon enam yang tidak stabil, sehingga dengan tepat terurai menjadi dua molekul 3-fosfogliserat (untuk setiap CO2).

9

2. Fase Reduksi

Pada reaksi ini suatu enzim mentransfer gugus fosfat dari ATP ke setiap molekul 3-fosfogliserat sehingga membentuk 1,3-bifosfogliserat. Selanjutnya sepasang elektron sumbangan dari NADPH mereduksi 1,3-bifosfogliserat menjadi G3P (gliseraldehid-3-fosfat). Khususnya, electron dari NADPH mereduksi gugus karboksil 3-fosfogliserat menjadi gugus karbonil yang berupa G3P, yang menyimpan banyak energi potensial.

Dalam fase ini untuk setiap tiga molekul CO2, terdapat enam molekul G3P. Tetapi hanya satu molekul dari gula berkarbon tiga ini dapat dihitung dari selisih perolehan karbohidrat. Siklus ini dimulai dengan nilai 15 karbon dari karbohidrat dalam bentuk tiga molekul berkarbon lima dalam RiBPO. Untuk selanjutnya terdapat nilai 18 karbon karbohidrat dalam bentuk enam molekul G3P. Satu molekul keluar siklus untuk digunakan tetapi lima molekul lainnya harus didaur ulang untuk meregenerasi tiga molekul RuBP.

3. Fase regenerasi akseptor CO2 (Ribulosa bifosfat RuBp)

Rangka karbon yang terdiri dari lima molekul G3P disusun kembali oleh langkah terakhir siklus calvin menjadi RuBP. Siklus ini  memerlukan tiga molekul ATP. Akhirnya RuBP terbentuk dan siap menerima CO2 kembali, dan siklus berlanjut. Untuk selisih molekul G3P, siklus calvin secara keseluruhan menggunakan 9 molekul ATP dan 6 molekul NADPH. G3P yang tersingkir akan menjadi materi awal untuk jalur metabolime yang mensintesis senyawa organic lainnya, termasuk glukosa dan karbohidrat lainnya.

10

Iklan

Spektrofotometri

spektro

Spektrofotometri merupakan salah satu metode dalam kimia analisis yang digunakan untuk menentukan komposisi suatu sampel baik secara kuantitatif dan kualitatif yang didasarkan pada interaksi antara materi dengan cahaya. Peralatan yang digunakan dalam spektrofotometri disebut spektrofotometer. Spektrofotometer adalah alat untuk menukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang. Spektrofotometer merupakan gabungan dari alat optik dan elektronika serta sifat-sifat kimia fisiknya. Dimana detektor dapat mengukur intensitas cahaya yang dipancarkan secara tidak langsung cahaya yang diabsorbsi. Tiap media akan menyerap cahaya pada panjang gelombang tertentu tergantung pada senyawa atau warna yang terbentuk.

Sinar atau cahaya yang berasal dari sumber tertentu disebut juga sebagai radiasi elektromagnetik. Radiasi elektromagnetik yang dijumpai dalam kehidupan sehari-hari adalah cahaya matahari. Cahaya yang dimaksud dapat berupa cahaya visibel, UV dan inframerah, sedangkan materi dapat berupa atom dan molekul namun yang lebih berperan adalah elektron valensi.

Spektrofotometer UV-Vis merupakan gabungan antara prinsip spektrofotometri UV dan Visible. Alat ini menggunakan dua buah sumber cahaya yang berbeda, yaitu sumber cahaya UV dan sumber cahaya Visible. Larutan yang dianalisis diukur serapan sinar ultra violet atau sinar tampaknya. Konsentrasi larutan yang dianalisis akan sebanding dengan jumlah sinar yang diserap oleh zat yang terapat dalam larutan tersebut.

Spektrofotometri uv-vis mengacu pada hukum Lambert-Beer. Apabila cahaya monokromatik melalui suatu media (larutan), maka sebagian cahaya tersebut akan diserap, sebagian dipantulkan dan sebagian lagi akan dipancarkan.

Sinar dari sumber cahaya akan dibagi menjadi dua berkas oleh cermin yang berputar pada bagian dalam spektrofotometer. Berkas pertama akan melewati kuvet berisi blanko, sementara berkas kedua akan melewati kuvet berisi sampel. Blanko dan sampel akan diperiksa secara bersamaan. Adanya blanko, berguna untuk menstabilkan absorbsi akibat perubahan voltase dari sumber cahaya.

Berikut Bagian-bagiandari alat Spektrofotometer UV-Vis :

Sumbercahaya :

Monokromator, terdiri atas :

Kompartemen sampel

Detektor

Visual display

Zat yang dapat dianalisis dengan spektrofotometri UV-Vis yaitu zat dalam bentuk larutan dan zat yang tampak berwarna maupun berwarna.

Pengukuran spektrofotometri menggunakan alat spektrofotometer yang melibatkan energi elektronik yang cukup besar pada molekul yang dianalisis, sehingga spektrofotometer UV-Vis lebih banyak dipakai untuk analisis kuantitatif dibandingkan kualitatif. Konsentrasi dari analit di dalam larutan bisa ditentukan dengan mengukur absorban pada panjang gelombang tertentu dengan menggunakan hukum Lambert-Beer (Rohman, 2007).

Hukum Lambert-Beer menyatakan hubungan linieritas antara absorban dengan konsentrasi larutan analit dan berbanding terbalik dengan transmitan. Jumlah radiasi cahaya tampak (UV, inframerah, dsb) yang diserap atau ditransmisikan oleh suatu larutan merupakan suatu fungsi eksponen dari konsentrasi zat dan tebal larutan.

Hukum Lambert-Beer dinyatakan dalam rumus sbb :

A = e.b.c
dimana :
A = absorban
e = absorptivitas molar
b = tebal kuvet (cm)
c = konsentrasi

Fungsi Karbohidrat

Beberapa fungsi Karbohidrat

1. Pada Hewan

a. Sumber karbon.

Karbohidrat dalam tubuh hewan dibentuk dari beberapa asam amino, gliserol lemak, dan sebagian besar diperoleh dari makanan yang berasal dari tumbuh – tumbuhan, karbohidrat dalam sel tubuh disimpan dalam hati dan jaringan otot dalam bentuk glikogen. Glikogen merupakan sumber polisakarida utama pada sel hewan. Seperti halnya pati pada sel tanaman. Seperti amilopektin, glikogen terbentuk dari polisakarida bercabang.

b. Penyusun struktur asam nukleat

Pada stuktur asam nukleat, pentosa merupakan penyusunnya. Akan tetapi tidak semua pentosa menjadi unit atau komponen penyusun sel. Asam nukleat disusun Penyusun membran sel. Dalam struktur kimia asam nukleat, kedua pentosa tersebut terdapat dalam bentuk lingkar furonosa. Ribosa merupakan penyusun RNA dan 2- deoksiribosa merupakan unit penyusun DNA.

1

2

c. Penyusun kerangka luar (eksoskeleton).

Kitin membentuk dinding sel eksoskeleton pada arthopoda.

d. Struktur penyusun membran sel

Sel jaringan hewan memiliki permukaan luar yang lunak dan fleksibel. Permukaan ini juga disebut dinding sel dan mengandung jenis rantai oligosakarida. Pada sel yang membatasi usus terdapat dinding amat tebal yang kaya akan karbohidrat, yang disebut glikokaliks atau dinding berbulu. Oligosakarida pada dinding sel tersebut terutama merupakan glikoprotein spesifik di dalam membran plasma, yang juga mengandung golongan lain dari molekul hibrida dengan gugus karbohidrat, yaitu glikolipid.

3

e. Sebagai cadangan makanan

Hewan menyimpan polisakarida yang disebut glikogen. Glikogen disimpan dalam hati dan otot dan bertindak sebagai penyimpan makanan pada hewan. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.

f. Pelumas sendi kerangka

Di persendian terdapat polisakarida yakni asam hialuronat yang menyusun cairan synovial. Cairan synovial merupakan pelumas di persendian. Synovial ini berfungsi untuk membantu pergerakan antara dua buah tulang yang bersendi agar lebih leluasa.

4

g. Senyawa perekat di antara sel

Peptidoglikan ditemukan dalam senyawa dasar seperti gel, atau perekat antar sel yang mengisi ruang diantara sel pada kebanyakan jaringan.

5

6

2. Pada Tumbuhan

a. Sebagai sumber karbon dan cadangan makanan

Pada tumbuhan karbohidrat disintesis dari CO2 dan H2O melalui proses fotosintesis dalam sel berklorofil dengan bantuan sinar matahari. Karbohidrat yang dihasilkan merupakan cadangan makanan yang disimpan dalam akar, batang dan biji sebagai pati (amilum).

7

8

b. Komponen asam nukleat

Sama seperti pada hewan, komponen penyusun asam nukleat pada tumbuhan berupa gula pentosa, yaitu ribosa dan deoksiribosa.

c. Penyusun dinding sel

Sel tumbuhan dikelilingi oleh stuktur polisakarida yang kaku. Kerangka dinding sel tumbuhan terdiri dari lapisan serat selulosa yang panjang, melebar, saling bersimpangan denagn diameter yang sama. Kerangka seperti serabut ini diliputi oleh matrik seperti semen yang terdiri dari polisakarida stuktural jenis lain dan bahan polimer lain yang disebut lignin.

Selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.

Beberapa senyawa penyusun dinding sel, antara lain:

–        Hemiselulosa

Hemiselulosa merupakan polisakarida yang tersusun atas glukosa, xilosa, manosa dan asam glukoronat. Di dalam dinding sel, hemiselulosa berfungsi sebagai perekat antar mikrofibril selulosa.

–       Pektin

Pektin merupakan polisakarida yang tersusun atas galaktosa, arabinosa, dan asam galakturonat.

–       Lignin

Lignin hanya dijumpai pada dinding sel yang dewasa dan berfungsi untuk melindungi sel tumbuhan terhadap lingkungan yang tidak menguntungkan.

9

d. Penyusun membran sel

Membran sel merupakan pembatas antara bagian dalam sel dengan lingkungan luarnya. Fungsinya antara lain untuk melindungi isi sel, pengatur keluar masuknya molekul-molekul dan juga reseptor rangsangan dari luar. Bagian khusus dari membran sel yang berfungsi sebagai reseptor adalah glikoprotein. Glikoprotein merupakan bagian dari membran sel yang tersusun atas karbohidrat dan protein. Selain itu, pada membran plasma terdapat glikolipid yang tersusun atas karbohidrat dan lemak. Glikolipid berfungsi sebagai sinyal pengenal untuk interaksi antar sel. Glikoprotein berfungsi untuk mengikat protein dari membran sel lain.

3. Pada Mikroba

a. Sebagai sumber karbon

Senyawa karbohidrat merupakan sumber karbon bagi bakteri asam laktat yang digunakan sebagai sumber energi dalam metabolisme sel. Dalam proses fermentasi, glukosa dikonversi menjadi asam laktat (homofermentatif), karbondioksida, etanol atau asam asetat (heterofermentatif).

b. Komponen asam nukleat

Sama seperti pada hewan dan tumbuhan, komponen penyusun asam nukleat pada tumbuhan berupa gula pentosa, yaitu ribosa dan deoksiribosa.

c. Penyusun dinding sel

Dinding sel bakteri yang terletak di sebelah luar membrane sel membentuk kulit kaku dan berpori yang membungkus sel. Dinding sel memberikan perlindungan fisik bagi membran sel yang lunak dan bagi sitoplasma di dalam sel. Dinding sel kebanyakan bakteri terdiri dari kerangka structural berikatan kovalen yang mengelilingi sel secara sempurna. Struktur ini tersusun atas rantai polisakarida panjang, pararel, dan saling berhubungan silang terhadap sesamanya pada selang tertentu, oleh suatu rantai polipeptida pendek.

10

Dinding sel bakteri mengandung peptidoglikan yang terletak di luar membran sitoplasmik. Peptidoglikan berperan dalam kekerasan dan memberikan bentuk sel. Peptidoglikan istilah yang menunjukan sifat hybrid strutur ini, yang mengabungkan unsur peptida dan polisakarida. Peptidoglikan yang berkesinambungan mengelilingi seluruh sel bakteri, dapat dipandang sebagai molekul tunggal yang besar dan serupa dengan sangkar.

d. Penyusun membran sel

Polisakarida berperan sebagai komponen yang menyusun permukaan luar membran sel. Karbohidrat yang berikatan dengan protein (glikoprotein) dan yang berikatan dengan lemak (glikolipid) merupakan struktur penting dari membran sel.

Struktur Karbohidrat

Karbohidrat berasal dari kata karbo yang berarti unsur karbon (C) dan hidrat yang berarti unsur air (H2O), jadi karbohidrat berarti unsur C yang mengikat molekul H2O. Karbohidrat merupakan senyawa yang  terbentuk dari molekul karbon, hidrogen dan oksigen. Rumus umumnya dikenal dengan Cx(H2O)n. Secara struktur, karbohidrat memiliki 4 gugus, yaitu gugus hidrogen (-H), gugus hidroksil (-OH), gugus keton (C=O) dan gugus aldehida (-CHO).Karbohidrat juga didefinisikan sebagai polihidroksi-aldehid atau polihidroksi-keton. Polihidroksi aldehida yaitu struktur karbohidrat yang tersusun atas banyak gugus hidroksi dan gugus karbonilnya barada di ujung rantai sedangkan polihidroksi keton yaitu struktur karbohidrat  yang tesusun atas banyak gugus hidroksi dan gugus karbonilnya berada di selain ujung rantai.

1

Berdasarkan jumlah sakarida penyusunnya, karbohidrat dibedakan menjadi 3 golongan, yaitu :

1.    MONOSAKARIDA

Monosakarida ialah karbohidrat yang sederhana, yang berarti molekulnya hanya tersusun dari beberapa atom karbon saja dan tidak dapat diuraikan dengan cara hidrolisis. Umumnya monosakarida disusun oleh 3 samapai 7 atom karbon, dan jumlah atom penyusunnya tersebut mempengaruhi pemanaan masing-masing monosakarida, yaitu :

1. Gula tiga karbon (Triosa)

Senyawa ini merupakan zat antara yang penting dalam lintasan metabolik fotosintesis dan respirasi sel. Yang termasuk ke dalam golongan ini adalah gliseraldehid dan dihidroksiaseton.

2. Gula empat karbon (Tetrosa)

Gula ini tidak banyak ditemui, walaupun beberapa bentuk berperan dalam proses fotosintesis dan respirasi.

3. Gula lima karbon (Pentosa)

Senyawa ini sangat penting dalam fotosintesis dan respirasi. Dua jenis pentose (ribose dan deoksiribosa) juga membentuk unsure pembangun utama untuk asam nukleat, yang penting bagi semua kehidupan.

4. Gula enam karbon (heksosa)

Gula ini sering ikut serta dalam tahap respirasi dan fotosintesis dan menjadi bangun utama dari banyak macam karohidrat lain termasuk pati dan selualosa. Kunci dari heksosa adalah glukosa dan fruktosa.

5. Gula tujuh-karbon (heptosa)

Salah satu jens heptosa adalah zat antara dalam fotosintesis dan respirasi. Jika tidak dalam bentuk itu, gula ini jarang didapati.

Berikut rumus struktur monosakarida :

Untitled

Karbohidrat yang paling sederhana adalah aldehida atau keton mempunyai dua atau lebih gugus hidroksi. Monosakarida yang paling kecil adalah gliseraldehida dan dihidroksiaseton senyawa-senyawa ini adalah triosa. Gliseraldehida mengandung gugus aldehida mempunyai karbon asimetrik tunggal jadi terdapat dua streoisomer dari aldose tiga karbon ini, D-gliseraldehida dan L-gliseraldehida. Sedangkan dihidroksi aseton adalah ketosa karena mengandung gugus keton.

Di bawah ini digambarkan anggota deret aldose sebagai berikut :

3

Di bawah ini digambarkan anggota deret ketosa sebagai berikut :

4

Pada senyawa organik dikenal rumus ruang (isomer) sebagai akibat adanya atom asimetris atau C khiral pada srtuktur molekulnya. Demikian juga monosakarida akan memiliki banyak isomer,tergantung dari jumlah atom C khiral yang ada pada molekulnya,rumus 2n,dimana n = jumlah C khiral. C khiral adalah karbon atom pusat pada struktur molekul. Asimetris artinya atom C khiral memiliki empat gugus subtituen yang berbeda.

Monosakarida bersifat aktif-optika ,artinya zat ini mampu memutar bidang sinar terpolarisasi yaitu ke kiri atau ke kanan jika sinar ini menembus/melalui monosakarida. Dengan demikian monosakarida memiliki lagi isomer lain yaitu isomer aktif-optika. Satu isomer memutar bidang sinar terpolarisasi ke kanan (kanan=dekstro) dn yang lain memutar ke kiri (kiri=levo). Dalam hal ini,gliseraldehida memiliki dua isomer aktif-optika yaitu isomer -d (D) dan isomer-l(L).

Semua monsakarida bersifat gula pereduksi. Sifat gula pereduksi ini disebabkan adanya gugus aldehida dan keton yang bebas, sehingga dapat mereduksi ion-ion logam,seperti tembaga (Cu) dan Perak (Ag).

5

Struktur proyeksi Fisher dan Haworth :

1. Struktur proyeksi Fischer

Emil Fischer (1852-1919) seorang ahli kimia organik bangsa jerman yang yang memperoleh hadiah nobel untuk ilmu kimia pada tahun 1902 atas hasil karyanya tentang kimia ruang (stereokimia) dan umus srtuktur karbohidrat, menggunakan rumus proyeksi untuk menuliskan rumus struktur karbohidrat.

Proyeksi fischer digunakan untuk mengutamakan konfigurasi (R) dan (S) dari karbon chiral. Pada proyeksi fischer dari suatu karbohidrat, rantai karbon digambarkan secara vertical (tegak) dengan gugusan aldehid atau keto berada pada puncak dari rumus.

1

Karbon nomor dua dari gliseraldehid berbentuk chiral dengan demikian glisheraldehid berbentuk sepasang enansiomer (bayangan cermin yang tidak dapat ditaruh diatasnya). Enansiomer ini dinamakan (R)-2,3 dihidroksipropanal dan (S)-2,3 dihidroksipropanal. Biasanya senyawa ini ditunjukkan dengan nama klasikalnya, D-gliseraldehid digambarkan dengan gugus hidroksil pada karbon chiral, sedangkan dari L-enansiomernya digambarkan dengan gugus hidroksil diproyeksikan kekiri.

7

Dua dari aldotetrosa, D-eritrosa dan D-tereosa mempunyai gugusan chiral yang terakhir (gugus hidroksil pada atom karbon 3) diproyeksikan kekanan. Karbon chiral ini mempunyai konfigurasi yang sama seperti karbon dalam D-gliseraldehid.

Dua aldotetrosa yang lain mempunyai gugus hidroksil pada atom karbon 3 diproyeksikan kekiri, konfigurasinya sama seperti pada L-gliseraldehid. Dengan dasar konfigurasi dari karbon chiral, semua karbohidrat dapat digolongkan kedalam satu dari dua subdivisi utama atau keluarga, keluarga D atau keluarga L. Semua golongan D monoskarida mempunyai gugusan hidoksil dari atomkarbon chiral paling bawah diproyeksi kekanan pada proyeksi fischer. Gula L justru berlawanan, gugus hidroksil pada hidroksil atom karbon chiral paling bawah diproyeksikan kekiri.

8 9

            Di alam lebih banyak ditemukan monosakarida yang berisomer D, maka semua monosakarida yang ada di alam dianggap berasal dari D-Gliseraldehida. Dengan sistematis ditemukan cara menentukan rumus struktur kimia monosakarida yang banyak ditemukan di alam ini. Dengan cara menyisipkan gugus H-C-OH dan gugus HO-C-H berganti-ganti diantara atom C nomor 1 dan nomor 2 pada D-Gliseraldehida. Dengan demikian maka didapatlah 4 aldopentosa dan 8 aldoheksosa.

2. Proyeksi Haworth

Sir Walter Norman Haworth (1883-1950) seorang ahli kimia Inggris yang pada tahun 1937 memperoleh hadiah nobel,berpendapat bahwa pada molekul glukosa kelima atom karbon yang pertama dengan atom oksigen dapat membentuk cincin segienam. Oleh karena itu, ia mengusulkan penulisan rumus struktur karbohidrat sebagai bentuk cincin furan dan piran.

10 11

Berdasarkan bentuk ini, maka rumus struktur glukosa yang terdapat dalam keseimbangan antara α- D- glukosa adalah sebagai berikut :

12

Rumus proyeksi Haworth biasanya digunakan untuk memperlihatkan bentuk cincin monosakarida. Walaupun batas cincin yang letaknya terdekat dengan pembaca biasanya digambarkan oleh garis tebal. Cincin piranosa beranggotakan enam karbon tidak merupakan bidang datar, seperti ditunjukkan oleh proyeksi Haworth. Pada kebanyakan gula, cincin ini berada dalam konfirmasi kursi, tetapi pada beberapa gula cincin tersebut berada dalam bentuk kapal. Bentuk-bentuk ini digambarkan oleh rumus konfirmasi. Konfirmasi dimensi spesifik gula sederhana 6 karbon penting dalam menentukan sifat biologis dan fungsi beberapa polisakarida.

13

Monosakarida-monosakarida penting :

1. D-gliseraldehid (karbohidrat paling sederhana)

Karbohidrat ini hanya memiliki 3 atom C (triosa), berupa aldehid (aldosa) sehingga dinamakan aldotriosa.

14

D-gliseraldehid (perhatikan bahwa gula ini hanya memiliki 3 atom C sehingga disebut paling sederhana)

2. Dihidroksiaseton

Dihidroksiaseton adalah monosakarida sederhana yang mengandung gugus ketosa.

15

3. D-glukosa (karbohidrat terpenting dalam diet)

Glukosa merupakan aldoheksosa, yang sering kita sebut sebagai dekstrosa, gula anggur ataupun gula darah.Gula ini terbanyak ditemukan di alam.

16

D-glukosa (perhatikan bahwa glukosa mengalami siklisasi membentuk struktur cincin)

4. D-fruktosa (termanis dari semua gula)

Gula ini berbeda dengan gula yang lain karena merupakan ketoheksosa.

17

D-fruktosa (perhatikan bahwa fruktosa mengalami siklisasi membentuk struktur cincin)

5. D-galaktosa (bagian dari susu)

Gula ini tidak ditemukan tersendiri pada sistem biologis, namun merupakan bagian dari disakarida laktosa.

18

D-galaktosa (perhatikan bahwa galaktosa mengalami siklisasi membentuk struktur cincin)

19

Perbedaan pokok antara D-glukosa dan D-galaktosa (perhatikan daerah berarsis lingkaran)

6. D-ribosa (digunakan dalam pembentukan RNA)

Karena merupakan penyusun kerangka RNA maka ribosa penting artinya bagi genetika bukan merupakan sumber energi. Jika atom C nomor 2 dari ribosa kehilangan atom O, maka akan menjadi deoksiribosa yang merupakan penyusuna kerangka DNA.

20

D-ribosa (perhatikan gula ini memiliki 5 atom C)

2. DISAKARIDA

Disakarida merupakan bagian paling umum atau paling banyak terdapat di alam dari Oligosakarida. Oligosakarida berasal dari bahasa Yunani yaitu oligos=beberapa, sedikit dan saccharum=gula. Oligosakarida biasanya mengandung paling sedikit dua unit monosakarida dan tidak melebihi delapan unit monosakarida. Jika hanya mengandung dua unit monosakarida maka disebut disakarida, jika tiga unit monosakarida disebut trisakarida dan seterusnya.

Disakarida adalah karbohidrat yang tersusun dari dua molekul monosakarida yang berikatan kovalen dengan sesamanya. Pada kebanyakan disakarida, ikatan kimia yang menggabung kedua unit monosakarida disebut ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain atau ikatan tersebut terjadi antara karbon anomerik pada satu monosakarida dan gugus hidroksil pada monosakarida lainnya.  Ikatan glikosida segera terhidrolisa oleh asam, tetapi tahan terhadap basa.

Jadi, disakarida dapat di hidrolisa menghasilkan komponen monosakarida bebasnya dengan perebusan oleh asam encer. Hidrolisis satu mol disakarida akan menghasilkan dua mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam. maltosa (gula gandum),  Sukrosa (gula tebu), dan laktosa (gula susu) merupakan anggota penting dari grup disakarida. Seperti dinyatakan oleh namanya, tiap molekul gula ini terdiri dari dua satuan monosakarida.

a. Maltosa

Maltosa adalah suatu disakarida yang paling sederhana dan merupakan hasil dari hidrolisis parsial tepung (amilum) dengan asam maupun enzim. Maltosa adalah disakarida yang paling sederhana, mengandung dua residu D-gluksa yang dihubungkan oleh suatu ikatan glikosida diantara atom karbon 1 ( karbon anomer) dari residu glukosa yang pertama dan atom karbon 4 dari glukosa yang kedua.Konfigurasi atom karbon anomer dalam ikatan glikosida diantara kedua residu  D-glukosa adalah bentuk α, dan ikatan ini dilambangkan sebagai α(1→4 ). Unit monosakarida yang mengandung karbon anomer di tunjukan oleh nomor pertama atau lokan pada lambang ini. Kedua residu  glukosa pada maltosa berada dalam bentuk piranosa.

Maltosa adalah gula pereduksi karena gula ini memiliki gugus karbonil yang berpotensi bebas, yang dapat dioksidasi.Residu glukosa dari maltosa dapat berada dalam bentuk α maupun β, Bentuk α dibentuk oleh kerja enzim air liur amylase terhadap pati. Maltosa dihirolasi menjadi dua molekul D-glukosa oleh enzim usus maltosa, yang bersifat spesifik terhadap ikatan α(1→4) Disakarida selobiosa juga mengandung dua residu D-glukosa, tetapi senyawa ini dihubunkan oleh ikatan β(1→4). Pada maltosa, sebuah molekul glukosa dihubungkan dengan ikatan glikosida melalui atom karbonnya yang pertama dengan gugus hidroksil atom karbon keempat pada molekul glukosa lainnya.

21

Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antar unit yaitu menghubungkan atom karbon 1 dari α-D-glukosa dengan atom karbon 4 dari α-D-glukosa. Maltosa adalah gula pereduksi karena gula ini memilki gugus karbonil yang berpotensi bebas yang dapat dioksidasi. Satu molekul maltosa terhidrolisis menjadi dua molekul D-glukosa oleh enzim usus maltose, yang bersifat spesifik bagi ikatan α(1-4).

b. Sukrosa

Sukrosa termasuk disakarida yang disusun oleh glukosa dan fruktosa. Gula ini banyak terdapat dalam tanaman. Sukrosa terdapat dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α. Sukrosa dibentuk oleh banyak tanaman , tetapi tidak terdapat pada hewan tingkat tinggi. Berlawanan dengan laktosa dan maltosa, sukrosa tidak mengandung atom karbon anomer bebas, karena karbon anomer kedua komponen unit monosakarida pada sukrosa berikatan satu dengan yang lain, karena alasan inilah sukrosa bukan merupakan gula pereduksi.

22

Struktur sukrosa  (α- D- glukopiranosil –β-D-fruktofuranosida)

Atom-atom isomer unit glukosa dan fruktosa berikatan dengan konfigurasi ikatan glikosilik yakni α untuk glukosa dan β untuk fruktosa. Dengan sendirinya, sukrosa tidak mempunyai gugus pereduksi bebas (ujung aldehid atau keton). Sukrosa mempunyai sifat memutar cahaya terpolarisasi ke kanan. Hidrolisis sukrosa menjadi glukosa dan fruktosa dikatalis oleh sukrase (disebut juga invertase karena menubah aktivitas optic dari putaran ke kanan menjadi ke kiri).

 c. Laktosa

Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4′-β.

23

Karena laktosa memiliki gugus karbonil yang berpotensi bebas pada residu glukosa, laktosa adalah disakarida pereduksi. Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.

 3. POLISAKARIDA

Polisakarida terdiri atas rantai panjang yang mempunyai ratusan atau ribuan unit monosakarida yang membentuk rantai polimer dengan ikatan glikosidik. Polisakarida dibedakan menjadi homopolisakarida dan heteropolosakarida. Contoh dari homopolisakarida adalah pati, dan contoh dari heteropolisakarida adalah asam hialuronat.

24

Struktur homopolisakarida

25

Struktur heteropolisakarida

Beberapa sifat polisakarida berbeda sekali dengan monosakarida atau disakarida. Sifat-sifatnya antara lain sebagai berikut :

  1. Polisakarida tidak mempunyai rasa manis
  2. Tidak mempunyai struktur kristal. Jika pun dapat larut, maka dia hanya merupakan larutan koloidal dan tidak dapat bereduksi.
  3. Polisakarida tidak dapat diragikan.
  4. Daya kelarutan dan daya reaksinya jauh lebih kecil kemungkinannya dibandingkan dengan gula-gula lainnya
  5. Polimer tepung (amilum), glikogen, dan selulosa semua terdiri atas komponn D-Glukosa, tetapi sifat kimianya, fisika, dan biologinya berlainan. Ini tidak ditentukan oleh komponen-komponen alamiahnya yang sama melainkan oleh strukturnya.

Beberapa polisakarida yang penting diterangkan di bawah ini :

1. Selulosa

Selulosa adalah polisakarida yang tidak dapat dicerna oleh tubuh, tetapi berguna dalam mekanisme alat pencernaan, antara lain : merangsang alat pencernan untuk mengeluarkan getah cerna, membentuk volume makanan sehingga menimbulkan rasa kenyang, serta memadatkan sisa-sisa zat gizi yang tidak diserap lagi oleh dinding usus.

Selulosa merupakan polisakarida yang banyak dijumpai dan ditemukan dalam dinding sel tumbuhan. Selulosa terdapat pada bagian-bagian yang keras dari biji kopi, kulit kacang, buah-buahan dan sayuran.

Selulosa merupakan polimer yang tidak bercabang, terbentuk dari β-D-glukosa (dimana monosakarida yang berdekatan) terikat bersama dengan ikatan β (1→4) glikosidik. Panjang ikatan bervariasi dari beberapa ratus sampai beberapa ribu unit glukosil. Dalam dinding sel tanaman, sejumlah besar selulosa terkumpul menjadi rantai silang serabut paralel dan bundel-bundel yang merupakan rantai tersendiri.

26

2. Chitin

Chitin merupakan polisakarida struktural ekstraselular yang ditemukan dalam jumlah besar pada kutikula arthropoda dan dalam jumlah kecil ditemukan dalam spons, molusca, dan annelida. Juga telah diidentifikasi dari dinding sel fungi. Polisakaridanya merupakan rantai tak bercabang dari polimer asetil-glukosamin dan terdiri atas ribuan unit. Bentuknya seperti selulosa. Fungsinya sebagai substansi penunjang pada insekta dan crustaceae (kepiting).

Kitin mempunyai rumus empiris (C6H9O4.NHCOCH3)n dan merupakan zat padat yang tidak larut dalam air, pelarut organik, alkali pekat, asam mineral      lemah tetapi larut dalam asam-asam mineral yang pekat. Polisakarida ini mempunyai berat molekul tinggi dan merupakan polimer berantai lurus  dengan  nama lain β-(1,4)-2-asetamida-2-dioksi-D-glukosa (N-asetil-D-Glukosamin)  (Suryanto et al., 2005).

Kitin mempunyai persamaan dengan selulosa, dimana ikatan yang terjadi antar monomernya terangkai dengan ikatan glukosida pada posisi -1,4. Sedangkan perbedaannya pada selulosa adalah gugus hidroksil yang terikat pada atom karbon nomor  2, pada kitin digantikan oleh gugus asetamida (NHCOCH3) sehingga kitin menjadi sebuah polimer berunit N-asetil-glukosamin. Struktur kitin dapat dilihat pada gambar.

27

3. Glikogen

Glikogen merupakan homopolisakarida nutrien bercabang yang terdiri atas glukosa dalam ikatan 1→4 dan 1→6. Banyak ditemukan dalam hampir semua sel hewan dan juga dalam protozoa serta bakteri. Glikogen merupakan cadangan karbohidrat dalam tubuh yang disimpan dalam hati dan otot. Jumlah cadangan glikogen ini sangat terbatas. Bila diperlukan oleh tubuh, diubah kembali menjadi glukosa.

Glikogen ini merupakan polisakarida yang penting sehingga lebih intensif dipelajari. Pada manusia dan vertebrata, glikogen didapat dalam hati serta otot yang merupakan cadangan karbohidrat. Glikogen dapat dengan cepat disintesis kembali dari glukosa. Glikogen terdiri atas jutaan unit glukosil. Unit glukosil terikat dengan ikatan 1→4 glikosidik membentuk rantai panjang, pada titik cabang terbentuk ikatan 1→6. Hal ini mengakibatkan terbentuknya struktur yang menyerupai pohon.  Dalam molekul tunggal glikogen hanya ada satu unit glukosa dimana atom karbon nomor 1 memegang satu gugus hidroksil. Semua gugus 1-OH lainnya terikat dalam formasi ikatan 1→4 dan 1→6 glikosidik. Gugus 1-OH tunggal yang bebas dinamakan “ujung pereduksi” (reducing end) dari molekul ditandai dengan R dalam gambar. Sebaliknya “ujung non-pereduksi” didapat (gugus 4-OH dan 6-OH bebas) pada terminal di luar rantai.

28

4. Pati

Pati merupakan polisakarida yang berfungsi sebagai cadangan energi bagi tumbuhan.Pati merupakan polimer α-D-glukosa dengan ikatan α (1-4). Kandungan glukosa pada pati bisa mencapai 4000 unit. Ada 2 macam amilum yaitu amilosa (pati berpolimer lurus) dan amilopektin (pati berpolimer bercabang-cabang).Sebagian besar pati merupakan amilopektin.

Pati adalah nutrien polisakarida yang ditemukan dalam sel tumbuhan dan beberapa mikroorganisme dalam beberapa hal mempunyai kesamaan dengan glikogen (glikogen terkadang disebut dengan “pati hewani”). Beberapa sifat pati adalah mempunyai rasa yang tidak manis, tidak larut dalam air dingin tetapi di dalam air panas dapat membentuk sol atau jel yang bersifat kental. Sifat kekentalannya ini dapat digunakan untuk mengatur tekstur makanan, dan sifat jel nya dapat diubah oleh gula atau asam. Pati di dalam tanaman dapat merupakan energi cadangan; di dalam biji-bijian pati terdapat dalam bentuk granula. mempunyai diameter beberapa mikron, sedangkan dalam mikroorganisme hanya berkisar 0,5-2 mikron.Pati dapat dihidrolisis dengan enzim amylase. Pati terdiri dari amilosa dan amilopektin.

Komponen amilosa pati merupakan polisakarida tak bercabang yang terikat 1→4 glikosidik, terdiri atas glukosa dan beberapa ribu unit glikosil. Rantai polisakarida membentuk sebuah heliks. Amilopektin merupakan polisakarida bercabang yang mengandung ikatan 1→4 dan 1→6 unit glikosil, hal  sama seperti dalam glikogen. Tentu saja amilopektin mempunyai lebih banyak struktur terbuka dengan sedikitnya ikatan 1→6 dan rantai lebih panjang.

29

Potongan Amilosa

30

Lokasi terbentuknya cabang amilopektin

5. Asam Hialuronat

Asam Hialuronat merupakan heteropolisakarida dan bercabang yang terdiri atas disakarida dari N-asetilglukosamin dan asam glukoronat. Asam glukoronat terikat kepada N-asetilglukosamin pada masing-masing disakarida dengan ikatan 1→3 glikosidik, tetapi disakarida yang berurutan terikat 1→4. Asam hialuronat didapat dalam cairan sinovial persendian, vitreous humor mata, dan substansi dasar kulit.

31